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Renormalization

Physics changes with the
energy scale:

Renormalization Group

a

Effective (Infrared)

Fundamental (Ultraviolet)

Flow in the space of theories (“time” ∼ energy scale) [Polchinski ’84 …]

Fixed points and trajectories



Weak versus strong coupling

Weak coupling

Perturbation theory

Non perturbative?

Strong coupling

?
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Jacques’s laws (around 2005)

First law

0 = 0

Too complicated!

Second law

The only formula you need to know is:

f (1) = f (0) +

∫ 1

0
dt f ′(t)
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For three variables…
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2 x

13

x23

f (x12, x13, x23)

apply (carefully!) the second law

f (1, 1, 1) = f (0, 0, 0) +

∫ 1

0
du12

∂f
∂x12

(u12, 0, 0) + . . .

+

∫ 1

0
du12du13

∂2f
∂x12∂x13

(u12, u13, inf(u12, u13)) + . . .
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The Brydges-Kennedy-Abdesselam-Rivasseau formula

Abdesselam-Rivasseau, CPHT ’94

Consider the complete graph over n vertices labelled {1, . . . n} and let
f (xij) be a function of the

(n
2

)
link variables xij . Then

f (1, . . . 1) =
∑
F

∫ 1

0

 ∏
(k,l)∈F

dukl

( ∂|F |f∏
(k,l)∈F ∂xkl

)
(wF

ij ) ,

• F runs over the forests (acyclic subgraphs) of the complete graph

• to each edge (k, l) in the forest we associate a variable ukl which is
integrated from 0 to 1

• we take the derivative of f with respect to the varibales associated to
the edges in the forest

• we evaluate this derivative at xij = wF
ij , the infimum of u along the

path in F connecting the vertices i and j



The wF
ij matrix

1

2 3

4

56

u 1
2 u 13

u
34

u56

wF =


1 u12 u13 inf(u13, u34) 0 0
. . . 1 inf(u12, u13) inf(u12, u13, u34) 0 0
. . . . . . 1 u34 0 0
. . . . . . . . . 1 0 0
. . . . . . . . . . . . 1 u56

. . . . . . . . . . . . . . . 1

≥ 0!



Why the BKAR formula is important

Notes on the Brydges-Kennedy-Abdesselam-Rivasseau forest interpolation
formula

There are many instances in mathmatical physics where one tries to
understand joint probability measures for a collection of random variables
X1, ...,Xn with n large, of the form

e−
∑n

i=1 V(xi)dµC(x) ,

where dµC is a Gaussian measure on Rn. The dependence between these
random variables is entierly due to the Gaussian measure which, in
general, is given by covariances Cij = cov(Xi,Xj) which do not vanish for
i 6= j. A typical procedure one uses in this type of problem is to try to
interpolate between the given covariance matrix C and the covariance
obtained by killing the o�-diagonal entries. The outcome is what is called
a cluster expansion in the constructive field theory literature.

Immagine what one can do with Jacques’s first law 0 = 0!
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The message

A new kind of analytically accessible strongly
interacting fixed points



ϕ4 model in d = 4− ε

S =
1
2

∫
ϕ(−∆ + m2)ϕ+

λ

4!

∫
ϕ4

d < 4 cures UV divergences

subtraction scale µ cures IR
divergences.

g dimensionless e�ective coupling at scale µ

Beta function – scale derivative of the dimensionless e�ective coupling

βg = µ∂µg
∣∣
λ fixed = −εg +

3
2
g2 + O(g3)
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The Wilson Fisher fixed point

βg = −εg + β2g2 + O(g3)

Stable, infrared a�ractive fixed point:

g? =
ε

β2
+ O(ε2)

If one only aims for the Nobel prize ε = 1

If one aims for rigour keep ε small!
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A tensor field theory

[Carrozza Tanasa ’15, Giombi Klebanov Tarnopolsky ’16 ’17 ’18]

Rank 3 tensor ϕb1b2b3 = O(1)
b1a1

O(2)
b2a2

O(3)
b3a3
ϕa1a2a3 , invariant action

S =
1
2

∫
ϕa1a2a3 (−∆)ϕa1a2a3 +

λ

4N3/2

∫
ϕa1a2a3ϕb1b2b3ϕc1c2c3ϕd1d2d3

δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3︸ ︷︷ ︸
δt

3

1

2

Indices follow the strands – one sum per closed colored cycle, pairwise
identifications of external indices:

N−
3
2 V+F

∏
δaibi
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Two and four point functions

Tetrahedron, pillow and double trace four point functions



Formal conformal limit

[Giombi Klebanov Tarnopolsky ’17]

Large N , small momentum the two point function can be obtained by
solving self consistently the Schwinger Dyson equation

〈ϕ(x)ϕ(y)〉 ∼ 1

|x − y|2 d
4

suggests a non Gaussian infrared fixed point



Wilson Fisher like fixed point?

[Giombi Klebanov Tarnopolsky ’17]

S =
1
2

∫
ϕ(−∆ + m2︸︷︷︸

mass

)ϕ+

∫
ϕϕϕϕ

(
λ

4N3/2
δt +

λp
4N2 δ

p︸ ︷︷ ︸
pillow

+
λd

4N3 δ
d︸ ︷︷ ︸

double trace

)

4− ε dimensions: fixed point ∼
√
ε but unstable (limit cycle)

But the tensor fixed point is in fact very di�erent!



Wilson Fisher like fixed point?

[Giombi Klebanov Tarnopolsky ’17]

S =
1
2

∫
ϕ(−∆ + m2︸︷︷︸

mass

)ϕ+

∫
ϕϕϕϕ

(
λ

4N3/2
δt +

λp
4N2 δ

p︸ ︷︷ ︸
pillow

+
λd

4N3 δ
d︸ ︷︷ ︸

double trace

)

4− ε dimensions: fixed point ∼
√
ε but unstable (limit cycle)

But the tensor fixed point is in fact very di�erent!



Conformal scaling

[Brydges Mi�er Scoppola 02, Abdesselam 06]

Flow to the CFT→ use form the onset the infrared scaling of the
covariance

[Benede�i Gurau Harribey ’19]

S =
1
2

∫
ϕ
[
(−∆)ζ︸ ︷︷ ︸
ζ=d/4

+ m2]ϕ+

∫
ϕϕϕϕ

(
λ

4N3/2
δt +

λp
4N2 δ

p +
λd

4N3 δ
d
)



Beta functions at all orders

For N →∞, at all orders in the couplings and irrespective∗ of the cuto�
scheme the β functions are quadratic:

k∂kg = βg = 0 ,

k∂kg1 = βg1 = β
g
0 − 2βg

1 g1 + β
g
2 g2

1 ,

k∂kg2 = βg2 = β
√

3g
0 − 2β

√
3g

1 g2 + β
√

3g
2 g2

2 ,

with βg
0 , βg

1 , βg
2 power series in the tetrahedral coupling g

g1± =
β
g
1 ±

√
(β

g
1 )2 − βg

0β
g
2

β
g
2

= ± i g + O(g2) ,

β
′
g1

(g1±) = ±
√

(β
g
1 )2 − βg

0β
g
2 = ± i g 4

Γ( d
4 )2

Γ( d
2 )

+ O(g2)

Tetrahedral invariant does not have a de�inite sign, pillow and double
trace do – take g = − i |g| !



The fixed points and the RG trajectories

g1− is ultraviolet a�ractive and strongly interacting

g1+ is infrared a�ractive, stable and strongly interacting

Explicit renormalization group trajectory from g1− to g1+

(g1,g2)
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