From constructive to tensor field theory

Răzvan Gurău

Paris, 2019
1 Field Theory

2 On forests

3 Tensor field theories
Physics changes with the energy scale:
Renormalization Group

Flow in the space of theories ("time" \sim energy scale) [Polchinski '84 ...]

Fixed points and trajectories
Weak versus strong coupling

Weak coupling
Perturbation theory

Strong coupling
Non perturbative?
1 Field Theory

2 On forests

3 Tensor field theories
Jacques’s laws (around 2005)

First law

\[f(1) = f(0) + \int_0^1 dt f'(t) \]

Too complicated!
<table>
<thead>
<tr>
<th>First law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 = 0$</td>
</tr>
</tbody>
</table>
First law

\[0 = 0 \]

Too complicated!
First law

\[0 = 0 \]

Too complicated!

Second law

The only formula you need to know is:

\[f(1) = f(0) + \int_0^1 dt f'(t) \]
For three variables...

$$f(x_{12}, x_{13}, x_{23})$$
For three variables...

\[f(x_{12}, x_{13}, x_{23}) \]

apply (carefully!) the second law
For three variables...

\[f(x_{12}, x_{13}, x_{23}) \]

apply (carefully!) the second law

\[
f(1, 1, 1) = f(0, 0, 0) + \int_0^1 du_{12} \frac{\partial f}{\partial x_{12}}(u_{12}, 0, 0) + \ldots
\]

\[
+ \int_0^1 du_{12} du_{13} \frac{\partial^2 f}{\partial x_{12} \partial x_{13}}(u_{12}, u_{13}, \inf(u_{12}, u_{13})) + \ldots
\]
Consider the complete graph over n vertices labelled \(\{1, \ldots, n\} \) and let \(f(x_{ij}) \) be a function of the \(\binom{n}{2} \) link variables \(x_{ij} \). Then

\[
f(1, \ldots, 1) = \sum_F \int_0^1 \left(\prod_{(k,l) \in F} du_{kl} \right) \left(\frac{\partial |F| f}{\prod_{(k,l) \in F} \partial x_{kl}} \right) (w_{ij}^F),
\]

- \(F \) runs over the forests (acyclic subgraphs) of the complete graph
- to each edge \((k, l)\) in the forest we associate a variable \(u_{kl} \) which is integrated from 0 to 1
- we take the derivative of \(f \) with respect to the variables associated to the edges in the forest
- we evaluate this derivative at \(x_{ij} = w_{ij}^F \), the infimum of \(u \) along the path in \(F \) connecting the vertices \(i \) and \(j \)
The w^F_{ij} matrix

$$w^F = \begin{pmatrix}
1 & u_{12} & u_{13} & \inf(u_{13}, u_{34}) & 0 & 0 \\
\vdots & 1 & \inf(u_{12}, u_{13}) & \inf(u_{12}, u_{13}, u_{34}) & 0 & 0 \\
\vdots & \vdots & 1 & u_{34} & 0 & 0 \\
\vdots & \vdots & \vdots & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & 1 & u_{56} \\
\vdots & \vdots & \vdots & \vdots & \vdots & 1
\end{pmatrix} \geq 0!$$
Notes on the Brydges-Kennedy-Abdesselam-Rivasseau forest interpolation formula

There are many instances in mathematical physics where one tries to understand joint probability measures for a collection of random variables X_1, \ldots, X_n with n large, of the form

$$e^{-\sum_{i=1}^{n} V(x_i)} d\mu_C(x),$$

where $d\mu_C$ is a Gaussian measure on \mathbb{R}^n. The dependence between these random variables is entirely due to the Gaussian measure which, in general, is given by covariances $C_{ij} = \text{cov}(X_i, X_j)$ which do not vanish for $i \neq j$. A typical procedure one uses in this type of problem is to try to interpolate between the given covariance matrix C and the covariance obtained by killing the off-diagonal entries. The outcome is what is called a cluster expansion in the constructive field theory literature.
There are many instances in mathematical physics where one tries to understand joint probability measures for a collection of random variables X_1, \ldots, X_n with n large, of the form

$$e^{-\sum_{i=1}^{n} V(x_i)} d\mu_C(x),$$

where $d\mu_C$ is a Gaussian measure on \mathbb{R}^n. The dependence between these random variables is entirely due to the Gaussian measure which, in general, is given by covariances $C_{ij} = \text{cov}(X_i, X_j)$ which do not vanish for $i \neq j$. A typical procedure one uses in this type of problem is to try to interpolate between the given covariance matrix C and the covariance obtained by killing the off-diagonal entries. The outcome is what is called a cluster expansion in the constructive field theory literature.
Field Theory

On forests

Tensor field theories
A new kind of analytically accessible strongly interacting fixed points
\(\varphi^4 \) MODEL IN \(d = 4 - \epsilon \)

\[
S = \frac{1}{2} \int \varphi(-\Delta + m^2)\varphi + \frac{\lambda}{4!} \int \varphi^4 \]

d < 4 cures UV divergences

subtraction scale \(\mu \) cures IR divergences.

\(g \) dimensionless effective coupling at scale \(\mu \)
ϕ^4 Model in $d = 4 - \epsilon$

\[
S = \frac{1}{2} \int \varphi (-\Delta + m^2) \varphi + \frac{\lambda}{4!} \int \varphi^4
\]

- $d < 4$ cures UV divergences
- Subtraction scale μ cures IR divergences.

g dimensionless effective coupling at scale μ

Beta function – scale derivative of the dimensionless effective coupling

\[
\beta_g = \mu \partial_\mu g \bigg|_{\lambda \text{ fixed}} = -\epsilon g + \frac{3}{2} g^2 + O(g^3)
\]
The Wilson Fisher fixed point

\[\beta_g = -\epsilon g + \beta_2 g^2 + O(g^3) \]

Stable, infrared attractive fixed point:

\[g_* = \frac{\epsilon}{\beta_2} + O(\epsilon^2) \]
The Wilson Fisher fixed point

\[\beta_g = -\epsilon g + \beta_2 g^2 + O(g^3) \]

Stable, infrared attractive fixed point:

\[g_* = \frac{\epsilon}{\beta_2} + O(\epsilon^2) \]

If one only aims for the Nobel prize \(\epsilon = 1 \)

If one aims for rigour keep \(\epsilon \) small!
A TENSOR FIELD THEORY

[Carrozza Tanasa ’15, Giombi Klebanov Tarnopolsky ’16 ’17 ’18]

Rank 3 tensor \(\varphi_{b_1 b_2 b_3} = O_{b_1 a_1}^{(1)} O_{b_2 a_2}^{(2)} O_{b_3 a_3}^{(3)} \varphi_{a_1 a_2 a_3} \), invariant action

\[
S = \frac{1}{2} \int \varphi_{a_1 a_2 a_3} \left(-\Delta \right) \varphi_{a_1 a_2 a_3} + \frac{\lambda}{4N^{3/2}} \int \varphi_{a_1 a_2 a_3} \varphi_{b_1 b_2 b_3} \varphi_{c_1 c_2 c_3} \varphi_{d_1 d_2 d_3} \left\{ \delta_{a_1} b_1 \delta_{c_1} d_1 \delta_{a_2} c_2 \delta_{b_2} d_2 \delta_{a_3} b_3 \delta_{c_3} d_3 \right\}
\]
A tensor field theory

[Carrozza Tanasa ’15, Giombi Klebanov Tarnopolsky ’16 ’17 ’18]

Rank 3 tensor \(\varphi_{b_1 b_2 b_3} = O_{b_1 a_1}^{(1)} O_{b_2 a_2}^{(2)} O_{b_3 a_3}^{(3)} \varphi_{a_1 a_2 a_3} \), invariant action

\[
S = \frac{1}{2} \int \varphi_{a_1 a_2 a_3} (-\Delta) \varphi_{a_1 a_2 a_3} + \frac{\lambda}{4N^{3/2}} \int \varphi_{a_1 a_2 a_3} \varphi_{b_1 b_2 b_3} \varphi_{c_1 c_2 c_3} \varphi_{d_1 d_2 d_3} \delta_{a_1 b_1} \delta_{c_1 d_1} \delta_{a_2 c_2} \delta_{b_2 d_2} \delta_{a_3 d_3} \delta_{b_3 c_3} \delta \]

Indices follow the strands – one sum per closed colored cycle, pairwise identifications of external indices:

\[N^{-\frac{3}{2}} V + F \prod \delta_{a_i b_i} \]
TWO AND FOUR POINT FUNCTIONS

Tetrahedron, pillow and double trace four point functions
Formal conformal limit

Large N, small momentum the two point function can be obtained by solving self consistently the Schwinger Dyson equation

$$\langle \varphi(x)\varphi(y) \rangle \sim \frac{1}{|x - y|^{2d/4}}$$

suggests a non Gaussian infrared fixed point
Wilson Fisher like fixed point?

$S = \frac{1}{2} \int \varphi(-\Delta + m^2_{\text{mass}}) \varphi + \int \varphi \varphi \varphi \left(\frac{\lambda}{4N^{3/2}} \delta^t + \frac{\lambda_p}{4N^2} \delta^p + \frac{\lambda_d}{4N^3} \delta^d \right)$

4 $- \epsilon$ dimensions: fixed point $\sim \sqrt{\epsilon}$ but unstable (limit cycle)
Wilson Fisher like fixed point?

\[S = \frac{1}{2} \int \varphi(-\Delta + \frac{m^2}{\text{mass}})\varphi + \int \varphi\varphi\varphi \left(\frac{\lambda}{4N^{3/2}} \delta^t + \frac{\lambda_p}{4N^2} \delta^p + \frac{\lambda_d}{4N^3} \delta^d \right) \]

4 \(-\epsilon\) dimensions: fixed point \(\sim \sqrt{\epsilon}\) but unstable (limit cycle)

But the tensor fixed point is in fact very different!
Conformal scaling

[Brydges Mitter Scoppola 02, Abdesselam 06]
Flow to the CFT → use form the onset the infrared scaling of the covariance

[Benedetti Gura Harribey ’19]

\[S = \frac{1}{2} \int \varphi \left[\left(-\Delta \right)^{\zeta = d/4} + m^2 \right] \varphi + \int \varphi \varphi \varphi \left(\frac{\lambda}{4N^{3/2}} \delta^t + \frac{\lambda_p}{4N^2} \delta^p + \frac{\lambda_d}{4N^3} \delta^d \right) \]
For $N \to \infty$, at all orders in the couplings and irrespective of the cutoff scheme the β functions are quadratic:

$$k \partial_k g = \beta_g = 0 ,$$

$$k \partial_k g_1 = \beta_{g_1} = \beta_0^g - 2 \beta_1^g g_1 + \beta_2^g g_1^2 ,$$

$$k \partial_k g_2 = \beta_{g_2} = \beta_0^{\sqrt{3}g} - 2 \beta_1^{\sqrt{3}g} g_2 + \beta_2^{\sqrt{3}g} g_2^2 ,$$

with $\beta_0^g, \beta_1^g, \beta_2^g$ power series in the tetrahedral coupling g

$$g_{1 \pm} = \frac{\beta_1^g \pm \sqrt{(\beta_1^g)^2 - \beta_0^g \beta_2^g}}{\beta_2^g} = \pm i g + O(g^2) ,$$

$$\beta'_{g_1}(g_{1 \pm}) = \pm \sqrt{(\beta_1^g)^2 - \beta_0^g \beta_2^g} = \pm i g \frac{\Gamma\left(\frac{d}{4}\right)^2}{\Gamma\left(\frac{d}{2}\right)} + O(g^2)$$

Tetrahedral invariant does not have a definite sign, pillow and double trace do -- take $g = -i |g|$!
\(g_{1^-} \) is ultraviolet attractive and strongly interacting

\(g_{1^+} \) is infrared attractive, stable and strongly interacting

Explicit renormalization group trajectory from \(g_{1^-} \) to \(g_{1^+} \)