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My interactions with CPHT (I)

A seminar by B. Souillard at CPHT in March 1984 on a rigorous
proof of Anderson localization → choice of my research field !

B. D. and R. Ram-
mal, PRL 55, 1148
(1985).
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My interactions with CPHT (II)

Many discussions with V. Rivasseau, C. Kopper, M. Disertori,
around 2000 helped me to understand better some aspects of RG
applied to fermionic systems.

S. Dusuel, F. Vistulo de Abreu, B. D., PRB 65, 94505 (2002).
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My interactions with CPHT (III)

Co-supervision of Tianhan Liu’s thesis with Karyn Le Hur.

Tianhan Liu, Cécile Repellin, B.D., N. Regnault, K. Le Hur, PRB 94,
180506 (2016).
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My interactions with CPHT (IV)

Collaboration with A. Mukhopadhyay, G. Policastro on
semi-holographic non-Fermi liquids.

G (k , ω)−1 = ζων + ω − ε(k), 0 < ν < 1

B. D., C. Ecker, A. Mukhopadhyay, G. Policastro,
PRD 96, 106011 (2017).
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Quantum Hall effect
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Rxx = (V (3)− V (4)) /I

Rxy = (V (3)− V (5)) /I
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Quantum nature of Hall resistance plateaus

Plateaus observed for (ν integer):

ρxy =
B

ne
=

h

νe2

→ Quantized electronic densities:

n = ν
eB

h

In terms of Φ0 = h
e : “Flux quantum”

Nelectrons = ν
Total magnetic flux

Φ0
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Landau levels are degenerate

Intuitively, each state occupies the same area as a flux quantum
Φ0, so that the number of states per Landau level =

Total magnetic flux
Φ0

ν is interpreted as the number of occupied Landau levels

3<   <4νentierν
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Ferromagnetism at ν = 1

Coulomb repulsion favours anti-symmetric orbital wavefunction →
spin wavefunction is symmetric → ferromagnetic state

mm−1 m+1 ......

ν = 1

exchange gap

no interactions with repulsive interactions

in QH systems :     no kinetic−energy cost !

( LL ~ flat band)
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Picture of a Skyrmion crystal
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Example of entangled textures

Bourassa et al, Phys. Rev. B 74, 195320 (2006)
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A class of trial states near ν = 1

Take antisymmetrized products of single particle states (Slater
determinants or Hartree-Fock states): |Sψ〉 =

∧N
α=1 |Φα〉

where Φα,a(r) = χα(r)ψa(r), r = (x , y), a ∈ {1, ...,N}.
χα(r)→ electron position.
ψa(r)→ slowly varying spin background. (〈ψ(r)|ψ(r)〉 = 1).

In the N = 2 case, if σa denote Pauli matrices:
Associated classical spin field: na(r) = 〈ψ(r)|σa|ψ(r)〉
Topological charge: Ntop = 1

4π

∫
d (2)r (∂x~n ∧ ∂y~n) · ~n

Because of large magnetic field, we impose that orbital
wave-functions Φα,a(r) lie in the lowest Landau level.
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Questions

To each classical spinor field configuration ψa(r), we associate a
many electron wave-function (Slater determinant) |Sψ〉. After
projection onto the lowest Landau level, H contains only the
Coulomb interaction!

1) Construction of optimal textures: how to minimize 〈Sψ|H|Sψ〉 ?

2) Absence of quantum fluctuations: |Sψ〉 eigenstate of H ?
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Energy functional

Main effect of PLLL: (Moon et al. (1995), Pasquier (2000),...)

nel(r) =
1

2πl2
− Q(r) + O(l2)

Nel = NΦ − Ntop → CONSTRAINT

Energy functional:

Etot,ψ ≡ 〈Sψ|H|Sψ〉 = Eloc,ψ + Enon−loc,ψ

Eloc,ψ: exchange energy (generalized ferromagnet), given by a
non-linear σ model energy functional (next slide).

Enon−loc,ψ = e2

8πε

∫
d2r

∫
d2r′Q(r)Q(r′)

|r−r′| .
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Eloc as CP(N − 1) model for exchange energy

Assume SU(N) global symmetry and local gauge symmetry:
|ψ(r)〉 → e iφ(r)|ψ(r)〉.

Eloc =

∫
d (2)r

(
〈∇ψ|∇ψ〉
〈ψ|ψ〉

− 〈∇ψ|ψ〉〈ψ|∇ψ〉
〈ψ|ψ〉2

)
Berry connection: A = 1

i 〈ψ|∇ψ〉
Topological charge:

∮
A.dr = 2πNtop

Eloc ≥ π|Ntop|

Lower bound is reached when |ψ(r)〉 is holomorphic or
anti-holomorphic: leading to a huge degeneracy.
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Strategy to minimize energy functional

Etot,ψ = Eloc,ψ + Enon−loc,ψ

If filling factor is close to M, Enon−loc << Eloc. To find optimal
textures, we can therefore:

1 Minimize Eloc in the presence of the Nel = NΦ − Qtop
constraint. This leads to a continuous family of degenerate
configurations.

2 Lift this degeneracy by minimizing Enon−loc within this
degenerate family. Physically, this favors textures in which the
topological charge density is as uniform as possible.
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Holomorphic maps from the sphere to CP(N − 1) (I)

S2 ∼= CP(1) ∼= C ∪ {∞} so we use one coordinate z ∈ C.
Holomorphic maps f : S2 → CP(N − 1): collections of N
polynomials P1(z), ...,PN(z).
Topological charge: number of intersection points of f (S2) with an
arbitrary hyperplane in CP(N − 1) = maximal degree d of
P1(z), ...,PN(z).
Topological charge density:

Q(z , z̄) = (1 + |z |2)2∂z∂z̄ log(
N∑
i=1

|Pi (z)|2)

Q(z , z̄) is constant when:

N∑
i=1

|Pi (z)|2 = (1 + |z |2)d
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Holomorphic maps from the sphere to CP(N − 1) (II)

Hermitian scalar product on degree d polynomials:

(P,Q)d =
d + 1
π

∫
d2r

P(z)Q(z)

(1 + |z |2)d+2

Orthonormal basis: ep(z) =

(
d
p

)1/2

zp

General texture of degree d : Pj(z) =
∑d

i=0 Aijei (z)
Q(z , z̄) is constant when raws of A are orthonormal.
If d ≥ N: No solution.
If d ≤ N − 2: many solutions, but not all components of the maps
are linearly independent.
If d = N − 1: AA† = IN = A†A, so (Pi ,Pj)d = δij .
Textures with uniform topological charge density ⇔ Components
form an orthonormal basis.
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Holomorphic maps from the torus to CP(N − 1) (I)

θ(z + γ) = eaγz+bγθ(z)

(θ, θ′)d =
∫
d2r exp(− πd |z|2

|γ1∧γ2|)θ(z)θ′(z)

Optimal textures
(d = N)

|Ψ(z)〉 =



θ0(z)
θ1(z)
.
.
.

θd−1(z)


(θi , θj)d = δij

Pattern of zeros (d=4)

γ1

γ2
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Holomorphic maps from the torus to CP(N − 1) (II)

d = N = 2
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Holomorphic maps from the torus to CP(N − 1) (III)

d = N = 4
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Holomorphic maps from the torus to CP(N − 1) (IV)

Spatial variations of topological charge: Q(r) is always γ1/d and
γ2/d periodic. Unlike on the sphere, Q(r) is not exactly constant.

At large d the modulation contains mostly the lowest harmonic,
and its amplitude decays exponentially with d .

Large d behavior for a square lattice:

Q(x , y) ' 2
π
−4de−πd/2[cos(2

√
dx)−2e−πd/2 cos2(4

√
dx)+(x ↔ y)]+...

Only the triangular lattice seems to yield a true local energy
minimum. This has been evidenced by computing eigenfrequencies
of small deformation modes.

B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)
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Holomorphic maps from Σ to CP(N − 1) (I)

Components of a map f : Σ→ CP(N − 1) were polynomials on the
sphere and θ functions on the torus. Note that polynomials have
poles at z →∞, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ, and choose
the components of the maps sj(z) as global holomorphic sections of
L, for 1 ≤ j ≤ N.

Recipe for optimal textures: N = dimension of the space of global
holomorphic sections of L. Choose components forming an
orthonormal basis for a well chosen hermitian product.
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Holomorphic maps from Σ to CP(N − 1) (II)

Geometric quantization recipe for the hermitian product
ω : volume form associated to constant curvature metric on Σ
hd : hermitian metric on fibers of Ld whose curvature form equals
−d(2πi)ω

(s, s ′)L,d =

∫
Σ
hd(s(x), s ′(x))ω(x)

Topological charge form: ωtop − ω = 1
π∂z∂z̄ logB(z , z̄).

B(z , z̄)L,d =
∑N

j=1 h
d(sj(z), sj(z))

For an orthonormal basis B(z , z̄) is the Bergman kernel, whose
large d asymptotics has been studied a lot in the 90’s.
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Holomorphic maps from Σ to CP(N − 1) (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin,
Lu,...(1990 to 2000)):
B(z , z̄) = d + a0(z , z̄) + a−1(z , z̄)d−1 + a−2(z , z̄)d−2 + ..., such
that aj(z , z̄) is a polynomial in the curvature and its covariant
derivatives at (z , z̄).

Interesting consequence: If ω is associated to the constant
curvature metric on Σ, the previous family of textures have uniform
topological charge, up to corrections which are smaller than any
power of 1/d .

Practical question: How to effectively construct such orthonormal
bases of sections, when Σ has genus ≥ 2 ?
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Questions

To each classical spinor field configuration ψa(r), we associate a
many electron wave-function (Slater determinant) |Sψ〉. After
projection onto the lowest Landau level, H contains only the
Coulomb interaction!

1) Construction of optimal textures: how to minimize 〈Sψ|H|Sψ〉 ?

2) Absence of quantum fluctuations: |Sψ〉 eigenstate of H ?
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Quantum degeneracy among holomorphic textures

First step: View Slater determinants |Sψ〉 as coherent states.
Question: Suppose the energy functional Eψ = 〈Sψ|H|Sψ〉 has a
local minimum at ψ = ψ0. Can we know if |Sψ0〉 is also an
eigenstate of H ?

Toy model: Anharmonic oscillator [b, b†] = 1. Take

Ĥ = E0 + ~ω0 b†b +
~∆

2
(b†)2 +

~∆̄

2
b2 + ...

Pick coherent states |Φz̄〉 = e−
|z|2
2 e z̄b

† |0〉 to define energy
functional E (z , z̄) ≡ 〈Φz̄ |Ĥ|Φz̄〉, which has a local minimum at
z = 0. In fact:

E (z , z̄) = E0 +
ω0

2
z̄z +

∆

4
z2 +

∆̄

4
z̄2 + ...

|0〉 eigenstate of Ĥ ⇔ pure monomials (b†)n and bn do not appear
in Wick-ordered expansion of Ĥ ⇔ pure monomials zn and z̄n do
not appear in Taylor expansion of E (z , z̄).
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Application to CP(N − 1) energy functional

First replace z by the classical field |ψ(r)〉.

Eloc = π|Ntop|+ 2
∫

d (2)r
(
〈∂zψ|∂z̄ψ〉
〈ψ|ψ〉

− 〈∂zψ|ψ〉〈ψ|∂z̄ψ〉
〈ψ|ψ〉2

)
Pick a holomorphic texture |ψ0〉 and expand
|ψ(r)〉 = |ψ0(r)〉+ |χ(r)〉.
∂z̄ |ψ0〉 = 0 ⇒ the Taylor expansion of Eloc around |ψ0〉 does not
contain any term involving only χa(r)’s nor any term involving only
χ̄a(r)’s.

B. Douçot, D. Kovrizhin, R. Moessner, PRB 93, 094426 (2016)
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Coherent states on CP(d − 1) (I)

Consider d bosonic modes with [ai , a
†
j ] = δij for 0 ≤ i , j ≤ d − 1.

Take m positive integer, and consider the finite dimensional
subspace of bosonic Fock space, defined by the constraint:∑N−1

i=0 a+
i ai = m.

Orthonormal basis: |~n〉 =
(â+

0 )n0 ···(â+
N−1)nN−1

√
n0!···nN−1!

|0〉,
∑N−1

i=0 ni = m,

ni ≥ 0.

Coherent states: |ev̄ 〉 =
∑ v̄

n1
1 ···v̄

nN−1
N−1√

n0!···nN−1!
|~n〉

Overlaps: 〈ev̄ ′ |ev̄ 〉 = (1+〈v |v ′〉)m
m!

Reproducing kernel: I = (m+N−1)!

π(N−1)m!

∫ ∏N−1
j=1 dvjdv̄j

(1+〈v |v〉)N
|ev̄ 〉〈ev̄ |
〈ev̄ |ev̄ 〉
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Coherent states on CP(d − 1) (II)

Classical functional:
〈ev̄ |

∏N−1
j=0 (a+

j )
mj a

nj
j |ev̄ 〉

〈ev̄ |ev̄ 〉 = m!
(m−n)!

∏N−1
j=1 v

mj
j v̄

nj
j

(1+〈v |v〉)n

Consider Ĥ an operator which can be written as a power series in
bosonic mode operators ai , a

†
j , and whose associated functional

E (v , v̄) = 〈ev̄ |Ĥ|ev̄ 〉
〈ev̄ |ev̄ 〉 is such that E (v , v̄) has a minimum at v = 0

and its Taylor expansion around v = 0 doesn’t contain any
monomial composed only of vj ’s nor only of v̄j ’s.

Then |e0〉 is an exact eigenstate of Ĥ, with eigenvalue E (0, 0).
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Towards continuum limit: lattice regularization

Take a 2D lattice, and associate to each site the quantized Hilbert
space obtained from the classical CP(d − 1) manifold, with the
same m at each site. The classical limit is obtained as m→∞.
Consider the Hamiltonian:

Ĥ = −
∑
〈rr′〉

∑
ij

a†i (r)aj(r)a
†
j (r′)ai (r′)

Its associated energy functional is:

E (v , v̄) = −m2 (1 + 〈v(r)|v(r′)〉)(1 + 〈v(r′)|v(r)〉)
(1 + 〈v(r)|v(r)〉)(1 + 〈v(r′)|v(r′)〉)

This provides a lattice discretization of the classical CP(d − 1)
energy functional, together with a well defined quantization
associated to it.
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Numerical experiments (D. Kovrizhin)

Triangulation on the sphere (642 sites)
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Numerical experiments (D. Kovrizhin)

Harmonic mode spectrum around a single Skyrmion classical
configuration: compatible with the magnetic Laplacian on the
sphere with a charge 2 magnetic monopole: manifestation of the
spin Berry phase associated to a slow twist of the spin background.
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Lattice effects on magnon spectrum

Absence of magnon-type excitations, due to holomorphic nature of
the texture, holds only when magnon wave-length » lattice spacing.

Magnon frequency shift due to magnon non-conserving terms in the
quadratic approximation around a classical Skyrmion solution
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Quantum corrections to Skyrmion energy (I)

Harmonic mode spectrum around a single Skyrmion classical
configuration gives quantum zero point correction normalized to
classical Skyrmion energy
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Quantum corrections to Skyrmion energy (II)

It turns out that the total quantum correction to the ground-state
energy of a Skyrmion configuration goes to zero as 1/Nsites when
Nsites →∞, even in the presence of small residual quantum
fluctuations induced by the lattice discretization.

B. Douçot, D. Kovrizhin, R. Moessner, Annals of Physics 399, 239
(2018).
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Final remarks

Ubiquity of geometric quantization:
Derivation of energy functionals and physical effects due to
projection onto lowest Landau level.
“Re-quantization” around classical textures and analysis of
quantum zero point motion correction to total energy.
More surprinsingly, provides a geometrical description of
optimal textures, i.e. those with most uniform topological
charge density.
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A few open questions

To identify optimal textures for filling factor ν close to an
integer M ≥ 2. For undoped graphene in a magnetic field, we
have N = 4 internal states, and M = 2. Idea: take Slater
determinants with M occupied states at a given position r, or
equivalently, an M-dimensional subspace in CN . Textures are
described by smooth maps Σ→ GrC(M,N).
Introduce physically relevant anisotropies. But then, we have
to give up the holomorphic nature of the textures. Is there a
well-behaved perturbation theory around this holomorphic
SU(N)-symmetric limit ?
Quantum melting of Skyrmion lattices far away from integer ν
and transition to fractional quantum Hall states ?
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