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Outline

q Magnetic confinement: an old story

q Some recent developments at CPHT

q What next?
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Fusion: a sun in a box, really?
q Proton-proton chain

reaction

q An excessively slow 
reaction

q Gravitationnel 
confinement 
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~200 W.m-3

1 
m

~500 W.m-3
• 15 x 106 K
• 150 g.cm-3

150 t

~500 kW.m-3



Easier (and dirtier) reactions

Deuterium-Tritium 
nuclear fusion

q With neutron emission

q Without neutron emission (aneutronic) :
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50 keV ~ 600 Millions K



Ignition criterion tells you how good you are

q The plasma is heated by the alpha particles

q It undergoes losses (conduction, radiation, etc.)

q Losses have to be compensated by  !-particle heating

6 Chapter 1. Introduction
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Product 〈σ v〉 for the D−T reaction

Figure 1.2: Product ⟨σv⟩ for the D-T reaction [Huba 2007].

p = nkBT the thermal pressure3. Before going any further, we need to know what kind
of device will be used to heat the plasma to temperatures of several keV. The issue is that
in order for the plasma to be in thermal equilibrium, the losses must be compensated by
the injected power, which is the sum of an auxiliary power and the fusion power carried
by the α particles: Pheat = Pα + Paux. It is convenient to define the quality factor Q
by the ratio of the fusion power Pfus to the auxiliary power Paux: Q = Pfus/Paux. We
want Q to be as high as possible. Achieving Q = 10 during a few hundreds of seconds is
one of ITER’s main goals. The plasma is transparent to neutron so their energy is not
available, only the power Pα = Pfus/5 carried by the α particles can heat the plasma. We
also define the energy confinement time τE , which characterizes the characteristic decay
time of the energy of the plasma. It is the energy content Wth divided by the losses Ploss:
Ploss = Wth/τE4. The thermal energy content is split in half between the electrons and
ions. For stoechiometric conditions, we have nD = nT = ne/2, so that Wth = 3nekT ,
where V is the plasma volume. Hence the injected power compensates the losses when

Pα + Paux = Pα

(

1 +
5

Q

)

=
3neV T

τE
,

with Pα = ∆Ef ⟨σv⟩n2
eV/20. Assuming that all the power is provided by the α

particles (Q = ∞), we must have

neτE =
60T

⟨σv⟩∆Ef
, (1.8)

which is called the Lawson criterion. At the temperatures where fusion can be envisaged,

3In the following we will drop the Boltzmann constant kB and simply assume that T is in units of
energy.

4In steady state. Otherwise the proper definition is τE = Wth/(Ploss − dtWth)
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q Inertial fusion: If you don’t want to bother confining your
plasma for a long time, you’ll have to increase the density
significantly

q Magnetically confined fusion: If you don’t like the idea of 
having solid like densities in your plasmas, then you’ll have to 
confine your plasma over macroscopic times



Magnetic confinement

6

q Plasma density

q Necessary confinement time : 
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(wikipedia)

B

Higher field means
smaller Larmor radius:
particles are confined
in 2 out of 3 directions

q Particles undergo a mirror force

q Too many particles escape through
the edges
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The torus solution conundrum
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The culprits are drifts
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More generally for any transverse force, a drift



A helical field becomes necessary
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The origin of current instabilities

10

q Flexible current coil in a magnetic
field

q Ideal instability can develop

q Characteristic time : Alfven time



The sawtooth instability [Von Goeler 1974]
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5.2. Phenomenology 125

time is not the same throughout a given discharge, and a range of different behaviors can
be obtained, however what matters most is the fastest observed crash. The discrepancy
with Kadomtsev’s model is less pronounced on Tore Supra, but still obvious. The relevant
parameters in this discharge are B0 = 3.8 T, R0 = 2.4 m, rs = 0.25 m, Te0 = 2.4 keV,
ne0 = 3×1019 m−3 and we still take s = 0.1. This gives τrec = 5 ms, slightly shorter than
the JET value.
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Figure 5.11: Fast ECE central signal in sawtoothing regime (a) and zoom around two
sawtooth crashes (b) and (c). The time resolution is 1 µs. The signals are seen to drop
in a characteristic time of 100 µs.

Hence, be it on Tore Supra or JET, Kadomtsev’s model is clearly in disagreement with
experiments. The discrepancy is even more pronounced in the larger and hotter JET

plasmas. There has been few progress in the understanding of the fast crash mechanism.
Reconnection theory has provided different possible causes for enhanced reconnection
rates compared to resistive reconnection (an example was studied in section 4.3), but
up to date, there has not been any convincing simulation of a sawtooth crash with
characteristic time scales in agreement with the experiment. This should be kept in
mind when studying the sawtooth simulations with the XTOR-2F code in the following
chapters.

Notice, however, that the time scale discrepancy itself does not yet rule out the basic
topological hypotheses of Kadomtsev’s model. Other observations lead to question them,
as we will see in section 5.2.6.

qFast ejection of the core in less than
100µs

q After a relaxation period (10ms – 1s), 
the process starts again

q Wide diversity of phenomenological
behaviours



How do we study this problem?
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NUCLEAR FUSION 5 (1965)

NECESSITY OF THE ENERGY PRINCIPLES FOR MAGNETOSTATIC STABILITY

G. LAVAL, C. MERCIER.. R. PELLAT

GROUPE DE RECHERCHE DE L'ASSOCIATION ETJRATOM-CEA SUR LA FUSION

FONTENAY-ATJX-ROSES (SEINE) FRANCE

Three energy principles for magnetostatic stability are known that are supposed to give necessary
and sufficient conditions. For this reason their minimization has been the subject of a lot of work
in plasma physics. Indeed one can easily justify the sufficiency of the conditions of stability devised
from these energy principles. But to the demonstrate their necessity one usually assumes that the
operators of the perturbed linearized motions have a complete spectrum of eigenfunctions in the
space of square integrable functions. We show the weakness of that assumption and propose two
new demonstrations of the necessity of energy principles for stability that require less stringent
assumptions. The first demonstration involves some properties of the Laplace transform. In the
second one we use the integral invariants of the linearized motion. The conclusions in both cases
are identical: if one finds a trial function which makes the potential energy negative, the equilibrium
is unstable. We give lower and upper bounds for the growth rate of the unstable perturbation.

Three energy principles are available for the study
of the stability of magnetostatic equilibria and they
correspond to three different sets of basic equations
describing the plasma, each of which applies in various
limiting situations. These three different approaches
are denoted by Kulsrud [1]: the fluid theory, the
adiabatic theory, and the double adiabatic theory. The
corresponding energy principles are: the principle of
Bernstein and others [2], developed independently
by Ham and others [3]; the principle of Kruskal and
Oberman [4], simultaneously published by Rosen-
bluth and Rostoker [<5]; the double adiabatic theory
principle of Bernstein and others [2].

These energy principles are very useful in plasma
physics and their minimization has been the subject
of a lot of works, especially for the problem of
controlled nuclear fusion. Nevertheless, if one can
easily justify the sufficient conditions of stability
obtained from these principles, their necessity has
remained, in our opinion, an open question. In this
article we show the weakness of the usual proof [1]
of the necessity of the energy principles for stability
and we give two new demonstrations which require
less stringent and more valid hypotheses.

In magnetohydrodynamics, the equation of the
perturbed linearized motions in the vicinity of some
given equilibrium can be written

| is a vector function of space and time, called a
"displacement"; F is a linear, real hermitian operator;
N can be a positive function of space, the density for
example, or a linear, real, positive definite hermitian
operator.

As usual, we introduce the functional dW (tj, £)
where

The interesting properties of 6W(tj, £) are the fol-
lowing ones. One the one hand, if dW(tj, |) is positive
definite for square integrable displacements, the
system can be considered to be stable because its

kinetic energy, (dtjjdt, Ndfjjdt), cannot grow in time.
On the other hand, let us suppose that we know a.
displacement r\ which makes 6W(rj, rj) negative. In
this case, the normal mode analysis of eq. 1 shows
that the equilibrium is unstable if (but only if) the
operator F has a complete system of eigenfunctions
in the space of square integrable functions [1]. How-
ever in magnetohydrodynamics, F does not have
this property and the usual demonstration of the
necessity of the energy principles is not valid. Let us
justify that point on general but precise grounds.

In the fluid theory the time Fourier transform of
eq. 1 has a singularity where the local Alfve"n speed
is equal to the frequency co. One can convince oneself
of this property in a very simple example, the one-
dimensional pinch studied by Furth and others [6). If
one studies this equilibrium within the frame of the
fluid theory (without resistivity and gravity) one
finds that dW is positive definite but nevertheless
normal modes of real frequency do not exist. One could
look for modes of the same types as those introduced
by Van Kampen and others for the Vlasov equation
but these modes are not square integrable. Studying
the same problem and using a Laplace transform with
regular initial conditions, one finds solutions which
have an asymptotic irreversible behaviour in the
time, (sin xt))t for example if a; is the spatial variable.
In the double adiabatic theory, owing to the ani-
sotropy of pressure the waves which propagate in a
homogeneous plasma can become unstable. Conse-
quently, in that model the time Fourier transform
of eq. 1 can have singularities for real or imaginary
values of the frequency co.

In the adiabatic theory Grad [7] has pointed out
the main reason for which the operator F has not a
complete system of eigenfunctions in the space of
square integrable functions. Indeed if one follows the
demonstration of the necessity of Kruskal's and Ober-
man's energy principle [1], one can see that the per-
turbed distribution function exhibits resonances be-
tween the particle motion along the lines of force and
the wave of frequency co = 2m:jr if x is the period of
the particle motion. One can even remark that, if the
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The stability criterion of the internal kink mode is given in toroidal geometry for plas-
mas with circular cross sections. Contrary to known results in cylindrical geometry, the
internal kink mode can be stable if the pressure gradient is sufficiently low.

Recent experiments" have shown that an unstable mode may occur in tokamak discharges when the
safety factor q falls below unity in the vicinity of the magnetic axis. The mode has a toroidal wave
number n = 1 and a poloidal wave number m = 1. It has the features of an internal kink instability in
agreement with theoretical predictions made for a cybndrical pinch in the framework of the ideal mag-
netohydrodynamic approximation. ' Let us first recall some analytical results for cylindrical plasmas
with circular cross sections. The plasma pressure P is assumed of order B ', the transverse magnet-
ic field B being much smaller than the longitudinal one B,. As follows from experiments, the plasma
pressure and the current density J, are decreasing functions of the pinch radius r, In the linearized
stability theory, the internal kink mode is mainly a helicoidal displacement fe'"' with the following
properties: $ is a constant vector Po for r &ro, zero for r) r, (the radial component $„, is a constant
m =1 mode for r &r,) ro is d. efined by B.V(e'"'~„=0. The internal kink mode is both pressure and
current driven (dp/dr & 0; dI, /dr & 0) as follows from the plasma potential energy per unit length'

nW, = [~B„'(r,)/p, ] [B (r,)/B.]'I h, .l'&ll'. ,
with

6W, = —p~(r, ) —f, drr'/r, '(Q '+2Q ' —3),

P~ (ro) = [2p.,/B '(ro)] f (r/ro)'( —dP/dr)dr,
and Q=rB„(ro)/rp (r); p~(r, ) appears as a definition of the poloidal p, which ordinarly gives a finite
value on the axis.
Let us now consider the generalized internal kink mode m = 1, arbitrary n, in a toroidal pinch. Us-

ing the cylindrical approximation, k becomes n/R, (R, being the major radius of the magnetic axis)
and Q- nq (q is the safety factor). 5W, is very small, of order [B (r,)/B,]' compared to the potential
energy of the external kink mode. Toroidal corrections to 5W are expected to be of order [B '(ro)/g
& (r, /R, )' or (B '/~)(B /nB, )'; consequently the cylindrical analysis holds only for large values of n.
Numerical computations' have already demonstrated significant effects due to the toroidal geometry
on the stability of the internal kink mode. The present work gives the analytical stability criterion
and the linear growth rate of the internal kink mode (for m = 1 and all values of n). We limit our in-
vestigation to the usual tokamak ordering ((P~/r, ) s 1], assuming circular cross section. The shear
is kept finite. Hence we have to include toroidal-geometry effects up to second order in the inverse
of the aspect ratio. In previous work' the shear was assumed to be of order r'/R', and consequently
it was necessary to include higher orders. The magnetic field in the cylindrical coordinate system
(R, Z, q) is

B=B +B~
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TRANSITION FROM A RESISTIVE KINK MODE
TO KADOMTSEV RECONNECTION

H. BATY, J.-F. LUCIANI, M.-N. BUSSAC
Centre de physique the"orique,
Ecole poly technique,
Palaiseau, France

ABSTRACT. The scaling of the non-linear reconnection process associated with the m = 1 internal kink instability
is studied in cylindrical geometry, using a three-dimensional numerical code with a full set of resistive MHD equations.
In the presence of an ideal unstable kink mode, the non-linear evolution of the instability shows a transition from a
purely resistive kink mode for high resistivity to Kadomtsev reconnection driven by the ideal kink mode for low
resistivity. For the case of low resistivity, the assumptions of the Kadomtsev reconnection model have been checked,
and the results confirm Kadomtsev's estimations of a scaling law of TJ"2. A model is proposed to understand the
transition and to compare the studies with previous numerical results obtained for different plasma parameters.

1. INTRODUCTION

Sawtooth oscillations are a common feature of
nearly all tokamak experiments. The central tempera-
ture drops in a sudden crash and then rises slowly until
the next crash. It is generally assumed that the cause
of these oscillations is a magnetic reconnection of the
plasma centre generated by an m = 1 instability (m is
the poloidal mode number).

Kadomtsev was the first to explain the crash in terms
of a magnetic reconnection driven by the internal kink
mode [1]. He considered the linear growth of the ideal
kink mode followed by the resistive evolution in the
non-linear stage of the instability. Rosenbluth et al. [2]
showed that, without dissipation, the ideal kink mode
evolves towards a helical equilibrium with a singular
current layer on the q = 1 surface, where q is the
safety factor, q = rBz/RBe, with Bz the longitudinal
field, B0 the azimuthal field, R the major radius and
r the distance from the magnetic axis. The current
layer diffuses owing to the resistivity -q and drives the
reconnection of magnetic surfaces. Kadomtsev showed
that because of the reconnection process, the growth of
the magnetic island takes place on a time-scale charac-
terized by V/2.

For resistive plasmas, one can consider two different
possibilities. The first is a linearly stable or neutrally
stable ideal internal kink mode. The second is an
unstable ideal kink mode for which Kadomtsev scaling
is expected to become valid.

For the first case, a purely m = 1 resistive kink
mode drives the reconnection. The linear growth of
this mode scales as rjl/3 [3]. The non-linear stage of

this mode has been extensively studied using reduced
MHD models [4-6] and, more recently, a full MHD
model [7]. Different scaling laws have been obtained,
according to the current profile and the plasma
resistivity.

When the ideal kink mode is unstable, the non-
linear Kadomtsev reconnection, which scales as T?I/2>
is expected to occur after saturation of this mode. To
our knowledge, this situation has not been addressed in
previous numerical studies, either because the reduced
MHD model was used or because in fully toroidal
simulations [7] a resistive instability occurs first.
Actually, in toroidal geometry, the ideal kink mode is
stable until a certain threshold on the poloidal beta
value is reached, while the resistive kink mode is
always unstable if q(0) < 1.

We have performed a numerical study to investigate
the Kadomtsev scaling and the underlying assumptions
for the case of an unstable ideal kink mode. The
assumptions of the Kadomtsev model are summarized
in Section 2. A short description of the numerical
code is given in Section 3. The results of the simula-
tions are presented in Section 4. Finally, in Section 5,
we propose a model that explains our results and the
different scalings obtained in previous numerical
simulations.

2. THE KADOMTSEV MODEL

In this section we summarize the main points of the
reconnection model proposed by Kadomtsev [1]. This
model relies on the assumption of the cylindrical
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FIG. 2. Displacement of the magnetic axis versus time (in Alfven
time) for values of t\ ranging from 10~4 to 10~7. The displacement
to = 0.15 a, corresponding to the saturation of the ideal kink, is
indicated by the dotted line.
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FIG. 4. Poloidal velocity (transverse) vfl in the singular layer
versus the displacement of the magnetic axis £0, for values of rj
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FIG. 3. log(^0) versus log(S), where £0 is the time derivative of
the displacement and S is the Lundquist number or the inverse of
the resistivity (S = Ilr\). Case A: circles, case B: squares.

Figure 2 is a plot of the displacement of the mag-
netic axis versus time for different values of the
resistivity, ranging from rj = 10'7 to t] = 10'4. All
cases have been computed with 100 points radially
and 50 points on the singular layer, except for the
case with t\ = 10"7, which has 200 points radially
and 100 points on the singular layer. This is obtained
by an accumulation of the grid points around the
reconnection layer. As explained in Section 2, we
have kept the ratio /i/rj fixed (/x/17 = 4 is used here).

4.1. Low resistivity case

For 77 < 10"5 (Fig. 2), we first observe a rapid
growth and a saturation of the ideal kink mode which
is slightly modified by the resistivity. The numerical
simulation in the ideal regime yields a saturated value
of the displacement, £0 « 0.15 a. This value is higher
than that calculated by Rosenbluth for the saturated
ideal kink mode because we have chosen a rather low
value of 1-qo- After this nearly ideal kink mode, the
current sheet diffuses and leads to reconnection, which
scales approximately as 771/2 (Fig. 3), in agreement
with the Kadomtsev scaling and the Sweet-Parker
scaling. When the resistivity is low, oscillations of
the displacement are observed during the reconnection.
These oscillations around the helical equilibrium result
from the gain in the kinetic energy during the growth
of the ideal kink mode and the very low values of the
viscosity used.

We have also verified that the main assumption of
Kadomtsev is true, namely that the transverse velocity
in the singular layer is independent of the resistivity
during the reconnection process. From Fig. 4, we
obtain vx « 1 x 10"2 va. This value agrees approxi-
mately with the theoretical value given by Eq. (4),
where, for p = 1 and B* — (1-qo) B9, we obtain
v± « 2 x 10"2 va. The poloidal velocities for the differ-
ent resistivities, plotted in Fig. 5, correspond to the
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MHD models [4-6] and, more recently, a full MHD
model [7]. Different scaling laws have been obtained,
according to the current profile and the plasma
resistivity.

When the ideal kink mode is unstable, the non-
linear Kadomtsev reconnection, which scales as T?I/2>
is expected to occur after saturation of this mode. To
our knowledge, this situation has not been addressed in
previous numerical studies, either because the reduced
MHD model was used or because in fully toroidal
simulations [7] a resistive instability occurs first.
Actually, in toroidal geometry, the ideal kink mode is
stable until a certain threshold on the poloidal beta
value is reached, while the resistive kink mode is
always unstable if q(0) < 1.

We have performed a numerical study to investigate
the Kadomtsev scaling and the underlying assumptions
for the case of an unstable ideal kink mode. The
assumptions of the Kadomtsev model are summarized
in Section 2. A short description of the numerical
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q Linear stabilisation of internal kinks
q Strong nonlinear acceleration effects
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kink (bp,thresh¼ 0.33). The ideal instability threshold was
determined with XTOR-2F simulations of the linear growth
phase with n¼ 0 and n¼ 1.

The kink cycle dynamics are strongly influenced by the
resistive diffusion time sg¼ 1=g¼S, which affects the
growth rate of the internal kink and the relaxation of the
q profile after each crash; and the characteristic energy
diffusion time sv\¼ 1=v\, which acts through the source
term in Eq. (3). (The characteristic times are given in internal
units, a¼ 1, sa¼ 1, l0¼ 1). Simulations are carried out
using sg=sv\¼ v\=g ¼ 30, while in tokamak experiments
sg=sv\ " 100.

For instance, in a previous study23 it was found that
there is a competition between sg, sv\, and bp through the
aforementioned plasma sources. Non-decaying kink cycles
could be recovered depending on the ratio of the resistive
diffusion time sg¼l0a2=g to the perpendicular energy diffu-
sion time sv\¼a2=v\, the poloidal beta, and the diamag-
netic stabilization effect (which scales like a).

In addition, the time scales in the kink dynamics are
modified by the diamagnetic rotations. For example, in the
resistivity dominated regime with diamagnetic flows, the
linear growth rate of the internal kink at the marginal
ideal stability point8 can be expressed in the form
cðc $ ix%iÞðc þ ix%eÞ ’ g. Thus, if S is to be varied while
maintaining the characteristic timescale of this particular as-
ymptotic regime constant, it is expected that the quantity
S$ 1=3=a should be kept constant. For instance, in the JET
tokamak, using R0¼ 3.1 m, B0¼ 2.7 T, n0¼ 2.0 ( 1019 m$ 3,
Te¼ 2 keV, we obtain a " 0.08 and S " 2 ( 108. Keeping
S$ 1=3=a constant, but decreasing the Lundquist number to
S¼ 107 we find a " 0.2. In the present paper, S¼ 106–107

and a¼ 0$ 0.2. Note, however, that these scalings are differ-
ent for each asymptotic regime of the internal kink.

Three different cyclic regimes are recovered in the sim-
ulations: a regime of helicoidal equilibria characterized by a
saturated m=n¼ 1=1 flat shear instability9,10 (no kink
cycles); a regime of non-decaying, sustained kink cycles
characterized by slow, resistivity-driven crashes;15–17 and a
regime of sustained kink cycles with fast crashes, i.e., a saw-
toothing regime. An example of the pressure evolution at dif-
ferent plasma radii for the sawtoothing regime is presented

in Fig. 2. Below, the dynamics of the two cycling regimes
are analysed. Then, the diamagnetic thresholds separating
each cyclic regime are studied.

B. Differences in the kink dynamics in the two cycling
regimes

In this section, we seek to characterize the dynamics in
the two regimes where kink cycles take place. In particular,
we determine how their timescales are affected by the resis-
tivity and by the diamagnetic effects. One of our objectives
is to determine the critical ion skin depth acrit at which the
internal kink dynamic transitions between different cyclic
regimes occurs.

To that effect, the lengths of each stage of the cycle are
estimated in the different regimes. The following criteria is
used to determine the length of the precursor, crash, and
ramp times: (a) The start of the precursor stage is given by
the time of maximum central pressure, when p0 starts deviat-
ing from the maximum pressure due to a radial displacement
(the maximum pressure, however, is still increasing); (b) the
crash starts when the core pressure starts collapsing and
the pressure inside the q¼ 1 surface starts decreasing; (c) the
ramp stage starts when the central pressure reaches a mini-
mum. Fig. 3 shows p0 and the maximum pressure at a line of
sight in order to illustrate the criteria. It can be observed that
the maximum of pressure is still increasing during the pre-
cursor stage.

The ramp, precursor, and crash times for the cases with
S¼ 107 are given in Fig. 4 as a function of the ion skin depth
a. The lower bound of a, i.e., acrit,1 in Fig. 4, is given by the
critical stabilization required for kink cycles to occur. The
duration of the precursor stage always appears to be in the
order of 1000–3000sa. The crash time increases with increas-
ing a and then abruptly decreases by almost an order of mag-
nitude at the second critical diamagnetic threshold (acrit,2 in
Fig. 4). Above the second diamagnetic threshold, the crash
time is shortened as the diamagnetic stabilization is
increased, in qualitative agreement with the crash time de-
pendence computed in Ref. 12. On the other hand, the

FIG. 1. (Color online) Initial equilibrium pressure and qprofiles.
FIG. 2. (Color online) Pressure versus time in XTOR-2F simulation of inter-
nal kink cycling with fast crashes, S¼ 2=3 ( 107, bp¼ 0.22, and a¼ 0.15.
The radial coordinate of each radial location is given by s¼ (w=ws)

1=2.

102501-3 Diamagnetic thresholds for sawtooth cycling Phys. Plasmas 18, 102501 (2011)

q First sustained sawtooth cycles 
[Halpern PoP 2011]

q Fast crash using electron
diamagnetic effects

q Modelling of density dynamics during
the crash, well compared to 
experimental observations [Nicolas 
PoP 2012]

q Impurity dynamics [Nicolas PoP 2013]
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magnetic field. The computed q-profile reads q0 ’ 0:94 and
rs ’ 0:35a for the asymptotic equilibrium, whereas q0 ’ 0:77
and rs ¼ 0:4a for the initial equilibrium. Also, this can be seen
in Fig. 1, where the first sawtooth cycle has a larger period
(sST ’ 5" 104sA) than the sustained sawtooth cycles (sST

’ 3:5" 104sA) for the reference case.

3. Grids and convergence

The radial resolution is chosen such that the current
sheet at the reconnection layer can be accurately computed.

The issue on the toroidal and poloidal mode resolutions used
in the simulations is a sensitive subject. Increasing the mode
resolution is numerically demanding as the spectral method
is used for the poloidal and toroidal directions.

The mesh used in the simulations is ðMr;Mh;M/Þ
¼ ð301; 32; 12Þ, where Mr, Mh; M/ are, respectively, the
number of grid points in r, h, / direction. A total of 4 toroi-
dal modes (n¼ 0,…, 3) and n þ 8 poloidal modes (m¼ 0,…,
n þ 7) for each toroidal mode are evolved in the simulations.

A signature of an insufficient resolution is a saturation
of the mode energies at the same level.35 This is not
observed in the present simulations during partial crashes.
Fig. 4(b) shows indeed that all mode energies are clearly dis-
tinguishable. Hence, the mesh is sufficient to describe partial
crashes.

III. XTOR-2F SIMULATION RESULTS

A. q-profile after a sawtooth full relaxation

Before studying partial crashes, the plasma behaviour
during the ramp phase of an ordinary sawtooth is investigated

FIG. 1. Time evolution pressure at dif-
ferent radii during sawtooth cycles in
the cross section geometry (a)
ja ¼ 1:6, (b) ja ¼ 1:8. For both cases,
da ¼ 0:4 and the q¼ 1 surface is at
rs ¼ 0:4a. The difference between the
initial equilibrium and the asymptotic
equilibrium is marked by the differ-
ence on the sawtooth period.

FIG. 2. Linear growth rate of the internal kink mode in ideal MHD for differ-
ent values of bp in an elongated plasma cross section (ja ¼ 1:6; da ¼ 0:4)
and the q¼ 1 surface at rs ¼ 0:4a. In this case, bp;c ’ 0:15.

TABLE I. Summary of the rescaled plasma parameters used in this work,

for different cases. !v? ¼ 3" 10& 6; !l ¼ 7:5" 10& 6 are the same for all
simulations.

ja da bp S !di rs=a Partial crash

1.6 0.4 0.1 107 0.15 0.4 No

1.6 0.4 0.1 107 0.15 0.47 Yes

1.8 0.4 0.1 107 0.15 0.4 Yes

1.8 0.4 0.1 107 0.15 0.32 No

FIG. 3. q-profiles of the initial (dashed line) and the asymptotic (solid line)
equilibria for the geometry ja ¼ 1:6; da ¼ 0:4 and the q¼ 1 surface at
rs ¼ 0:4a. The q¼ 1 radius is changed from rs ¼ 0:4a to rs ’ 0:35a, as the
initial equilibrium is not regained.

052509-4 Ahn et al. Phys. Plasmas 23, 052509 (2016)
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Chapter 5. Experimental observations of Sawteeth on the Tore Supra and

JET tokamaks

5.2.4 Compound sawteeth and partial crash

There are similarities between what we call compound sawteeth and the second kind of
crash described above. Fig. 5.12 displays an example of a compound sawtooth in Tore
Supra pulse #44634 on the central density. In the middle of the sawtooth ramp, at
t = 5.03 s, a discontinuity followed by oscillations can be observed. Note that this is
the same ramp as the first one of Fig. 5.11 a), where the oscillations can also be seen
at t = 5.03 s, although the effect seems more dramatic on the central density in this
particular case.
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Figure 5.12: Compound sawtooth crash in Tore Supra pulse #44634
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Figure 5.13: Slow ECE signals in JET pulse #84729, showing a compound sawteeth quite
regular behavior. The blue and green signals are inside the q = 1 surface, while the red
one is beyond the q = 1 surface.

Fig. 5.13 shows a series of compound sawtooth crashes on JET pulse #84729. This
time, it is clearly seen on the ECE signals. We see a quite regular behavior for each

q Modeling of partial crashes 
[Ahn PoP 2016]

q Modeling of Tearing
island healing
[Fevrier PoP 2017]

Simulation

Experiment

Figure 16. Gain function as a function of the normalized time T Tmin min
continuous necessary to reach the minimum island width, obtained with a

broad source term (d » W1.4RF sat). While the sweeping does not significantly change the efficiency, the modulation allows significant
enhancement of the stabilizing effect. Coupled with a sweep, this provides a reliable method to control islands. Results from nonlinear MHD
simulations.

Figure 17. Evolution of an island’s width when controlled by a coupled method (modulation + sweep or FADIS + sweep), computed using
nonlinear MHD simulations. In both cases, the island can be suppressed or drastically reduced, proving that these schemes are good
candidates for tokamak operation since they are robust towards misalignment or deposition width uncertainties.
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In Fig. 9, the Poincaré section of the magnetic field and the 3D view of the pressure of the perturbed equi-
librium are shown. In Fig. 10, the same plots are presented at the end of the nonlinearly unstable case in Fig. 8.
The plasma evolves towards a 3D equilibrium state with a saturated m=n ¼ 3=2 island. In Fig. 11 however, the
same plots are shown for the nonlinearly stable case in Fig. 8. The initial seed island vanishes on a resistive
scale time until the initial unperturbed equilibrium is recovered.

The stable and the unstable cases in Fig. 9 were performed with 200 radial points, 12 toroidal modes
(including n ¼ 0) and every toroidal mode has a resolution of 32 poloidal modes. These simulations costed
4 and 10 hours cpu time at about 5 Gigaflops on one processor of a NEC SX8 vector computer for the stable
and the unstable case in Fig. 9, respectively.

Typical time steps determined by the limiters of Section 3.4 range between 3sa and 5sa throughout all the
simulation. A weak limitation comes from the radial magnetic field through the condition (18). Further-
more, the slow diffusion of the axisymmetric fields leads to about three violations of the condition (20) dur-
ing the entire simulation thus resulting in three computations and decompositions of the semi-implicit
matrices.
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Fig. 10. Poincaré plot of the magnetic field and 3D view of the Pressure at the end of the unstable case in Fig. 8.

H. Lütjens, J.-F. Luciani / Journal of Computational Physics 227 (2008) 6944–6966 6963



Outline

q Focus at CPHT on the internal kink mode for decades

q Sophisticated tools developed and leading research
carried out

q Sawtooth cycles and a few puzzling phenomena
elucidated

q Long-lasting problems still unsolved (fast crash)

q A new playground opens with the hybrid kinetic/MHD 
code XTOR-K
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Kinetic effects

qParticle motion: 3 periodic motions
qResonance with fluid modes for the slowest precession motion
qCan be stabilizing or destabilizing



Sawteeth as a root cause for disruption

24

Sawteeth are basically inevitable on tokamaks, 
will be a concern for ITER operation

Frequent
sawteeth

Long sawteeth
(>10 s) Disruption

Confinement 
degradation

α fast
particles



25

The hybrid approach to model 
energetic particle effects

MHD Evolution

Particle push
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q Particles are integrated in 6D 
(Boris-Buneman)

q Typically 100 M particles

q Nonlinear phase not 
accessible yet

q Typically 2-3 Picard iterations
are necessary
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The hybrid approach to model 
energetic particle effects

Physics of 
Kinetic/MHD 

coupling

PIC Collisions
Impurity Transport

In MHD perturbation

Fast-particle
triggered

MHD

Edge stability
and 

transport

Heating
Eq. distribution function

Postdoc at CPHT: F. Orain

Myself, ongoing work Fast-particle
Stabilized

MHD
PhD student at CEA 
Cadarache: G. Brochard

Collaboration with EPFL

Yet to come, possible with the code
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Physics of the fast crash: difficult

amplitude ∣ ˜ ( )∣B xmax z at each time in logarithmic scale, and
luminance is used to indicate the relative amplitude with
respect to the overall amplitude (dark for negative and bright
for positive). The effect of outflow jets in stretching the
fluctuations is evident. Panel (d) shows the amplitude of the
Fourier spectrum ∣ ˆ ( )∣B kz in logarithmic scale. This panel also
shows several additional lines: the white dotted line indicates
the trend of mode-stretching due to the outflow jets, i.e.,

= - ¢dk dt kv ;x the blue dash–dotted line denotes the stability
threshold =ka 1; the green dashed line denotes the fastest
growing wavenumber; and the gray solid line denotes the
dominant wavenumber. The Fourier spectrum amplitude is
shown to closely follow the trend = - ¢dk dt kvx. Another
noteworthy feature is that the dominant mode at disruption is
not the fastest growing mode.

A sequence of representative snapshots from disruption to
nonlinear saturation for Run S5 are shown in Figure 5. In each
panel, the upper half shows the out-of-plane current density
profile Jy and the bottom half shows the outflow profile vx. The
magenta solid lines denote the separatrices that separate the two
large-scale coalescing islands. Because the sizes of plasmoids
evolve quite substantially during this period, the range along
the z direction varies from panel to panel to better
accommodate the plasmoids at a given time. Panel (a) shows
a snapshot at the disruption time t=t 4d A, when typical sizes of
plasmoids just exceed the inner layer width. Here the dashed
lines mark the inner layer width and the dotted lines mark the
current sheet width at disruption. The dominant wavelength
identified by our diagnostics, l p= k2d d, is shown to
faithfully represent the length scales of plasmoids along the x

direction. In panel (b) a snapshot at t=t 4.12 A shows that
extended secondary current sheets have developed between
plasmoids. These secondary current sheets are susceptible to
the plasmoid instability and further fragmentation. This fractal-
like cascade (Shibata & Tanuma 2001) is clearly evident in
panel (c) at t=t 4.4 A, when the reconnection rate reaches
maximum. Finally, panel (d) shows a snapshot when the
plasmoid instability reaches nonlinear saturation.
Simulations of other cases all exhibit features qualitatively

similar to those presented in Figures 4 and 5. However, the
quantitative values of diagnostic outcomes such as the disruption
time td, current sheet half-width ad, linear growth rate gd, and
dominant wavenumber kd depend on the parameters S and ò in a
complex manner. The outcomes of diagnostics are summarized in
Table 1 and are plotted in Figure 6 as scalings with respect to the
Lundquist number S. The values in Table 1 are given in the
original normalized units of the simulations. On the other hand, in
Figure 6 the quantities td, ad, gd , and kd are normalized to
appropriate global scales tA and L; we recall that in the original
normalized units, =V 1,A L=0.25, and t = 0.25A . The panels in
Figure 6 are organized in two sets of parameter scans with respect
to S. Runs S1–S7 with noise amplitude� = -10 6 are shown as red
symbols, and runs H1–H7 with� = -10 3 are shown in blue. Three
additional runs N1–N3 with varying noise amplitudes at the same
= ´S 2.5 106 are shown as black symbols.
The growth time tg marks the beginning when the overall

amplitude starts to grow. It can be seen from Table 1 that the
maximum growth rate g = ( )O 10gmax, , i.e.,g t � –2 3g Amax, , at
=t tg for all cases. This reaffirms the physical intuition that for

the fluctuation amplitude to grow effectively, the growth rate

Figure 5. Representative snapshots between disruption and saturation for the Run S5. In each panel, the upper half shows the out-of-plane current density profile Jy
and the bottom half shows the outflow profile vx. The magenta solid lines denote the separatrices that separate the two large-scale coalescing islands. Note that the z
direction is stretched in these plots, and the range along the z direction varies from panel to panel to better show the plasmoids. Panel (a) shows a snapshot at the
disruption time t=t 4d A. Here the dashed lines mark the inner layer width and the dotted lines mark the current sheet width at disruption. The dominant wavelength
identified by our diagnostics,l p= k2d d , faithfully represents the length scales of plasmoids along the x direction. Note that the x and z coordinates are normalized to
the current sheet half-length L, as such the other length scales δ, a, andld here are also normalized in the same manner. Panel (b) shows a snapshot after the disruption
at t=t 4.12 A. At this time, extended secondary current sheets have developed between plasmoids. These secondary current sheets are susceptible to the plasmoid
instability and further fragmentation. This fractal-like cascade is clearly evident in panel (c) at t=t 4.4 A, when the reconnection rate reaches maximum. Panel (d)
shows a snapshot when the plasmoid instability reaches nonlinear saturation.
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q In z direction : 2880 points

q In x direction: 37800 points

q More than 100 000 000 fluid
unknowns!

q First plasmoids obtained with XTOR-2F

q But unrealistic if one wants to compute
relevant resolutions

q Not sure how to go further here



Conclusion

q Still a lot to say about 
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