FROM TRANSITION METAL PNICTIDES TO HIGH-THROUGHPUT COMPUTATIONAL SCREENING

61st anniversary of the Centre de Physique Théorique - 24/03/2019
Ambroise van Roekeghem
A PHD STUDENT IN CPHT : 2011-2014

61st anniversary of the Centre de Physique Théorique - 24/03/2019
Ambroise van Roekeghem
HAVING 2 ADVISORS, A GOOD IDEA?
SUPERCONDUCTIVITY IN IRON PNICTIDES

DOES IT LOOK GOOD?

Credit: Jeff Fitlow/Rice University
FROM BA0.6K0.4FE2AS2 TO BACO2AS2

Werner et al, Nature Physics 8 (2012): 331
THEORETICIANS DOING EXPERIMENTS
EXPECTED THINGS
UNEXPECTED THINGS
Having 2 advisors, a good idea?
Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions

Priyanka Seth,1 Philipp Hansmann,1,2 Ambroise van Roekeghem,1,3 Loig Vaugier,1 and Silke Biermann1
1Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 21 August 2015; revised manuscript received 22 July 2016; published 4 August 2017)

Observation of an isotropic superconducting gap at the Brillouin zone centre of Tl$_{0.63}$K$_{0.37}$Fe$_{1.78}$Se$_2$

X.-P. Wang1,2, P. Richard$^{1(*)}$, X. Shi1, A. Roekeghem1,3, Y.-B. Huang1, E. Razzoli2, T. Qian1, E. Rienks4, S. Thirupathaiah4, H.-D. Wang5, C.-H. Dong5, M.-H. Fang5, M. Shi2 and H. Ding$^{1(b)}$

received on 27 August 2012; accepted by J. Fink on 27 August 2012
published online 12 September 2012
Electronic Band Structure of BaCo$_2$As$_2$: A Fully Doped Ferropnictide Analog with Reduced Electronic Correlations

N. Xu,1 P. Richard,1,* A. van Roekeghem,1,2 P. Zhang,1 H. Miao,1 W.-L. Zhang,1
T. Qian,1 M. Ferrero,2 A. S. Sefat,3 S. Biermann,2,4 and H. Ding1

1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Centre de Physique Théorique, Ecole Polytechnique, CNRS-UMR7644, 91128 Palaiseau, France
3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114, USA
4Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan

(Received 18 October 2012; published 28 January 2013)
Having 2 advisors, a good idea?

Screening of Coulomb interaction

\[H_{\text{loc}} = V n_{\uparrow} n_{\downarrow} \]
\[+ \lambda (n_{\uparrow} + n_{\downarrow})(b^\dagger + b) \]
\[+ \omega_0 \left(b^\dagger b + \frac{1}{2} \right) \]

Formation of electronic polarons with enhanced effective mass and screened Coulomb interaction

\[\tilde{H}_{\text{loc}} = (V - 2 \frac{\lambda^2}{\omega_0}) \tilde{n}_{\uparrow} \tilde{n}_{\downarrow} \]
\[- \frac{\lambda^2}{\omega_0} (\tilde{n}_{\uparrow} + \tilde{n}_{\downarrow}) + \omega_0 \left(b^\dagger b + \frac{1}{2} \right) \]
The SEX+DDMFT method

WHERE IS MASSIMO?
Computing Phonons

Quantum statistics, finite T

\[\rho_{h}(\{u_{i\alpha}\}) \propto \exp\left(-\frac{1}{2} u^{T} \Sigma^{-1} u \right) \]

\[\Sigma(i\alpha, j\beta) = \frac{\hbar}{2\sqrt{M_i M_j}} \sum_{m} \omega_{m}^{-1}\left[1 + 2n_{B}(\omega_{m})\right] \epsilon_{m\alpha} \epsilon_{m\beta}^{*} \]

CORRELATIONS OR PHONONS?

van Roekeghem, Richard, ..., Biermann and Ding, Physical Review B 93, 245139 (2016)
CORRELATIONS OR PHONONS?

HIGH-THROUGHPUT SCREENING
HIGH-THROUGHPUT SCREENING

ABX_3 with $X=\text{O}$ or F

- 8000 possible combinations
- 400 non-magnetic semi-conductors
- 90 found mechanically stable at 1000 K
- 35 already synthesized perovskites
- 17 mentioned only as non-perovskites
- 38 potentially new compounds
- 2 with negative thermal expansion at 300 K

Thank you!